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Abstract—Graph Neural Networks (GNN) have emerged as
a powerful tool in recommendation systems due to their abil-
ity to adeptly model complex relational data. Despite their
potential, existing GNN-based approaches often fail to fully
harness the synergistic benefits of integrating social networks
and knowledge graphs into the recommendation process, over-
looking the nuanced differences between these data sources. To
address these gaps, we propose a novel Integrating Social and
Knowledge Graphs (ISKG) framework tailored for GNN-based
Recommender Systems. The ISKG model amalgamates user-item
interactions, social connections, and knowledge graph insights
into a unified representation, enhancing the recommendation
quality through a multi-faceted approach. It starts with gen-
erating initial embeddings, progresses through a fusion layer for
feature amalgamation, and refines these features in successive
propagation layers. An innovative Adaptive Weighting Mecha-
nism dynamically balances the influence of social and knowledge
graph-enhanced features, leading to a Prediction Layer that
finalizes the recommendations. Our comprehensive evaluation
showcases ISKG’s superiority over conventional baselines, high-
lighting its ability to achieve an effective balance between social
and knowledge-based recommendations, thus paving the way
for more accurate and nuanced recommendation systems. The
project details are available at https://yuzengyi.github.io/ISKG/.

Index Terms—Recommendation, Graph Neural Network, So-
cial and Knowledge Graphs

I. INTRODUCTION

In the era of explosive growth of Internet information,
recommendation system has successfully evolved into one
of the basic tools of information service. It can help users
make reasonable choices and decisions, improve the efficiency
of data processing, and effectively alleviate the problem of
information explosion [1]. The traditional recommendation
algorithms are: CF, CB, etc. However, due to the problem of
data sparsity, it is impossible to recommend based on more
weak correlation information of users. Therefore, scholars
have tried to adopt deep learning methods.

In the past few years, deep learning has developed rapidly
and has become one of the mainstream methods in artificial
intelligence research. In image detection [2], the use of depth
perception technology applied to automatic driving [3] and
other specific aspects of the application has been rich. The
basic idea of deep learning is to obtain a relatively accurate
feature representation by stacking multi-layer neural networks
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and through two steps of linear transformation and nonlinear
activation. Among them, graph neural network is widely used
in personalized recommendation due to its powerful ability to
capture the complex relationship between nodes [4].

The graph neural network (GNN) obtains the representation
of each node by iteratively aggregating the information of
adjacent nodes of the target node [5]. PATCHY-SAN proposed
by Niepert et al [6], LGCN proposed by Gao et al [7], and
DCNN proposed by Atwood et al [8]. Before that, transform
is also a better way, Transformers excel in handling global
context and impacting textures [9]. All use this idea to fully
mine the interaction information between node information,
improve the sensitivity between graph nodes, and can extract
data features in the graph field.

Neural network architectures based on graph structure data
such as GCMC [10], GAT [11] and GraphSAGE [12] have
achieved remarkable results in some well-known fields (such
as social networks and bioinformatics). However, most of the
current recommendation methods based on graph structure
have two problems : 1) do not consider the social impact of
users 2) the correlation between resources is not considered.
Social influence refers to the use of interactive behavior data
and social relationships between users to build a personalized
model that reflects users’ social interests, and based on this
model to achieve customized content or service recommenda-
tions for different users [13]. The knowledge graph contains
a large number of entities and their relationships, which can
provide richer and more comprehensive information for the
recommendation system. By integrating this information into
a graph neural network, the model can better understand items,
users, and the complex relationships between them.

Based on the user interaction graph, this paper uses the
user social relationship graph and the knowledge graph for
recommendation. Our goal is to extract high-order semantic
information from three graphs to capture the real preferences
of each user and the attractiveness of each item. Our main
contributions are summarised as follows:

• We developed a new method ISKG, which integrates user
item graph (IG), social graph (SG) and knowledge graph
(KG) under the framework of graph neural network.

• Extensive experiments on public datasets demonstrate the
effectiveness of ISKG and its interpretability in under-
standing the importance of complex relationships.



The rest of this article is organized as follows. The section
II explains the related definitions and model architecture of
knowledge graph and social graph. The section III introduces
our proposed method in detail. In the section IV, we give the
experimental process and results. Finally, we summarize this
paper and give the future research directions.

II. PROBLEM FORMULATION

In the domain of recommender systems, three fundamental
objects and three essential types of relationships are recog-
nized.

Initially, we define the two core objects: a user set U =
{u1, u2, . . . , um}, where m = |U |, and an item set V =
{v1, v2, . . . , vn}, where n = |V |. Each user ui ∈ U is
represented as a vector that includes attributes such as age,
preferences, and other demographic details. Similarly, each
item vj ∈ V is characterized by a vector that details attributes
like genre, price, and other pertinent features.

Subsequently, certain properties of items can be abstracted
from the entities and represented as edge information. For
instance, a textbook related to mathematics can be represented
as (Textbook, BelongsTo, mathematics). Consequently, we
introduce an entity set T = t1, t2, . . . , tl, where l = |T |.

Fig. 1. Illustration of the three-dimensional relationship among users, items,
and entities, and its deconstruction into two-dimensional representations: the
user-item interaction graph, the social graph, and the knowledge graph.

As elucidated in Fig. 1, we explore the tripartite relation-
ships that form a three-dimensional space and subsequently
deconstruct this space into two-dimensional graphs for analy-
sis: the user-item interaction graph, the social graph, and the
knowledge graph.

Based on these definitions, we provide a detailed exposi-
tion of the problem formulation.

A. User-Item Interaction Graph

Reflecting on user-item relationships, we introduce a user-
item interaction matrix I ∈ RM×N , which delineates the
users’ rating preferences for items. Each entry within this
matrix signifies a user’s level of interest in a particular item.
For instance, Ii represents the set of users who have rated
item i, with Ii = {a|Iia = score}. This notation implies
that for item i, the user set Ii consists of users a where
the interaction Iia corresponds to a specific rating or score.
Consequently, we construct the user-item interaction graph
GI = (U ∪ V,EI), where EI is the set of edges symbolizing
meaningful interactions inferred from the matrix I .

B. Social Graph

Within the context of social relationships, if user ui follows
user uj , we assign Sij = 1; otherwise, Sij = 0. This binary
schema forms the social matrix S, serving as the user-user
adjacency matrix that encapsulates the follow dynamics among
users. The social graph is thus represented as GS = (U,ES),
with ES emerging from S, illustrating the network of social
connections within the user set U .

C. Knowledge Graph

In terms of item-entity relationships, if item vj is linked to
entity tf , we set Kjf = 1; otherwise, Kjf = 0. This binary
framework establishes the knowledge matrix K, functioning
as the item-entity adjacency matrix. The knowledge graph is
therefore denoted as GK = (V ∪ T,EK), where EK consists
of the set of edges that delineate the relationships between
items and entities.

D. Task Description

This section delineates the recommendation task to be
undertaken in this study:

• Input: a set of graphs (ISKG), encompassing the user-
item interaction graph GI , the social graph GS , and the
knowledge graph GK .

• Output: a predictive model designed to generate a ranked
list of items tailored to the user’s interests.

III. METHODOLOGY

The architecture of the ISKG model, as illustrated in Fig. 2,
adopts a hierarchical approach to embedding generation and
relevance scoring, with a significant focus on the Propagation
Layers (III-C).

The model commences with the Initial Embedding Layer
(III-A), which transforms users, items, and entities into com-
pact vector representations, setting the stage for advanced
feature integration and refinement.

Central to ISKG is the Fusion Layer (III-B), where a
sophisticated amalgamation of features occurs, enhancing the
overall representational richness. This layer adeptly merges the
inherent and contextual attributes of users and items, fostering
embeddings that adeptly reflect the intricate dynamics of user-
item interactions.



Fig. 2. Architecture of the ISKG Model. Beginning with the derivation of initial embeddings for users, items, and entities, the model progresses through a
fusion layer for feature enhancement, followed by iterative refinement in propagation layers. Finally, an Adaptive Weighting Mechanism adjusts the weights
of features enhanced by the social graph and knowledge graph, with the Prediction Layer computing the final outcomes.

The crux of ISKG’s efficacy, however, lies within the
Propagation Layers (III-C). These layers iteratively refine the
embeddings, with a deliberate focus on incorporating only
the most relevant information at each iteration. This selective
assimilation, depicted by the involvement of specific nodes in
Fig. 2, amplifies the model’s ability to discern and encapsulate
the complex web of relationships inherent in the data. By
progressively deepening the interaction understanding through
these layers, ISKG adeptly captures the nuanced essence of
user-item relationships, thereby enhancing the recommenda-
tion quality.

A. Initial Embedding Layer

The initial embedding layer is dedicated to encoding user,
item, and entity nodes. Its primary function is to transform the
input data into low-dimensional embedding vectors p(0)u ∈ Rd,
q
(0)
i ∈ Rd, and o

(0)
f ∈ Rd for users, items, and entities, respec-

tively. These embedding vectors are subsequently represented
through the embedding matrices P , Q, and O. By integrating
the dimensions of P , Q, and O from the ISKG framework, a
three-dimensional space can be constructed.

B. Fusion Layer

The Fusion Layer, as the subsequent layer, plays a crucial
role in amalgamating features from diverse sources to augment
the representational capacity of the model. For each user a,
the fusion layer combines the user’s embedding vector pa with
its associated feature vector xa to produce u0

a:

u0
a = g(Wa · [pa, xa]), (1)

where Wa is a transformation matrix, and g(x) is a nonlinear
transformation function.

In a similar vein, for each item i, the item embedding v0i
is derived as a function of its inherent latent vector qi and its
feature vector yi, as shown below:

v0i = g(Wi · [qi, yi]). (2)

Mapping v0i onto the P-Q plane yields v0ia = v0i ; likewise,
when mapped onto the Q-O plane, the result is v0if = v0i .

Finally, for the entity associated with an item, the model
construction can be articulated as follows:

t0f = g(Wf · [of , zf ]). (3)

C. Propagation Layers

In each iteration denoted by layer k + 1, embeddings
from users denoted by uk

a, items denoted by vki and entities
denoted by tkf from the preceding layer k serve as inputs.
The propagation layers successively refine the embeddings to
produce vk+1

i , uk+1
a , and tk+1

f through propagation functions.
This recursive process initiates at k = 0 and culminates upon
reaching a predetermined depth K.

Considering item i and its embedding at the kth layer vki ,
we construct the subsequent embedding vk+1

i at layer k + 1
from the interest graph GI as follows:

ṽk+1
ia = AGGREGATEu(u

k
a, ∀a ∈ Ii) =

∑
a∈Ii

ηk+1
ia uk

a, (4)

vk+1
ia = ṽk+1

ia + vkia. (5)

Here, Ii denotes the set of users who have provided ratings
for item i, and uk

a is the embedding of user a at layer k. The
aggregation weight is denoted by nk+1

ia , and the updated em-
bedding for each item vk+1

i combines the aggregated neighbor
embeddings with the item’s previous layer embedding.



This process is analogous for enhancing the embeddings
with the knowledge graph.

ṽk+1
if = AGGREGATEt(t

k
f , ∀f ∈ Ki) =

∑
f∈Ki

ηk+1
if tkf , (6)

vk+1
if = ṽk+1

if + vkif . (7)

Simple mean pooling fails to account for varying signifi-
cance of user interests in the representation of items. Thus,
an attention mechanism is employed to compute the weights
ηia and ηif in Eqs. (4) and (6), using the following attention
functions:

ηk+1
ia = MLPattentiona([v

k
ia, u

k
a]), (8)

ηk+1
if = MLPattentionf ([v

k
if , t

k
f ]). (9)

The attention network adopts a MultiLayer Perceptron (MLP)
to determine the significance of node connections based on
user and item embeddings at layer k. Subsequent normaliza-
tion of attention weights is performed as follows:

ηk+1
ia =

exp(ηk+1
ia )∑

b∈Ii
exp(ηk+1

ib )
, (10)

ηk+1
if =

exp(ηk+1
if )∑

b∈Tf
exp(ηk+1

ib )
. (11)

The exponential function ensures the non-negativity of atten-
tion weights. Utilizing the exponential function guarantees that
each computed attention weight exceeds zero.

For every user a, their latent representation at layer k is
symbolized by uk

a. Central to both the social structure GS

and the affinity graph GI , a user’s embedding uk+1
a at layer

k + 1 assimilates influences from these dual networks: the
dispersion of influence within GS and the dissemination of
interests within GI . The term p̃k+1

a encapsulates the compos-
ite embedding resultant from social adjacency, while q̃k+1

a

aggregates the embedding based on item-centric interest at
the subsequent layer. The evolution of each user’s embedding
uk+1
a is thus articulated as

uk+1
a = uk

a + (γk+1
a1 p̃k+1

a + γk+1
a2 q̃k+1

a ), (12)

with p̃k+1
a and q̃k+1

a computed through

p̃k+1
a =

∑
b∈Sa

αk+1
ab uk

b , (13)

q̃k+1
a =

∑
i∈Ia

βk+1
ai vki , (14)

where αk+1
ab and βk+1

ai denote the scores reflecting social and
interest influence, calculated as

αk+1
ab = MLPsocial([u

k
a, u

k
b ]), (15)

βk+1
ai = MLPinterest([u

k
a, v

k
i ]). (16)

Post-calculation of node-specific attentive weights, these are
inputted into the graph attention framework, permitting us to
formulate the graph attention weights γk+1

al (l = 1, 2) as

γk+1
a1 = MLPattention([u

k
a, p̃

k
a]), (17)

γk+1
a2 = MLPattention([u

k
a, q̃

k
a ]). (18)

In the enhancement phase involving the knowledge graph,
the updated entity embedding tk+1

f at layer k+1 is the result of
the previous embedding tkf augmented with the weighted sum
of two components: the refined knowledge representation õk+1

f

and the interest-driven entity representation q̃k+1
f , expressed

as:
tk+1
f = tkf + (γk+1

f1 õk+1
f + γk+1

f2 q̃k+1
f ), (19)

where õk+1
f aggregates the influence from the knowledge

aspect, computed by:

õk+1
f =

∑
b∈Ef

αk+1
fb tkb , (20)

and t̃q
k+1
a incorporates the influence from the user interest,

determined by:
t̃q

k+1
a =

∑
i∈Ia

τk+1
ai vki . (21)

The attentive weights αk+1
fb and τk+1

ai are learned via a
dedicated MultiLayer Perceptron for the knowledge graph and
user interest, respectively:

αk+1
fb = MLPknowledge([t

k
f , t

k
b ]), (22)

τk+1
ai = MLPinterest([u

k
a, v

k
i ]). (23)

The modulation of the entity embeddings is guided by the
attention coefficients γk+1

f1 and γk+1
f2 , formulated as:

γk+1
f1 = MLPattention([t

k
f , õ

k
f ]), (24)

γk+1
f2 = MLPattention([t

k
f , t̃q

k
a]). (25)

D. Concatenation Layers

Following the K-level propagation process, we collate
the embeddings for users and items, represented by uk

a

and vki across all layers up to k = {0, 1, 2, . . . ,K}. For
each user a, we compile her comprehensive embedding as
u∗
a = [u0

a∥u1
a∥ . . . ∥uK

a ], which merges her representations
across the layers. Correspondingly, for items in the con-
text of the social graph, we assemble the final embedding
v∗ia = [v0ia∥v1ia∥ . . . ∥vKia ], and similarly, for entities, we
construct t∗f = [t0f∥t1f∥ . . . ∥tKf ] as their cumulative em-
bedding. Likewise, within the framework of the knowledge
graph, the conclusive item embedding is formulated as v∗if =

[v0if∥v1if∥ . . . ∥vKif ]. The Concatenation Layers thus enable the
synthesis of feature sets that reflect enhancements from the
social (Eq.(26)) and knowledge graphs (Eq.(27)) as follows:



UV = [u∗
a∥v∗ia], (26)

TV = [t∗f∥v∗if ]. (27)

E. Adaptive Weighting Mechanism

Fig. 3. Schematic of the Adaptive Feature Weighting Module.

Illustrated in Fig.3, The feature vector v∗ai formulates the
weighting coefficient λ via a convolutional operation, facilitat-
ing the dynamic linkage of UV and TV . The precise formula
is articulated as

λ = W ⊗ UV + b,

v∗ai = φ(TV ) · (1− λ) + UV · λ.
(28)

where φ(·) denotes the process of upsampling, precisely
through linear interpolation, and xi symbolizes the feature map
at the ith tier.

F. Prediction Layer
Subsequently, the forecasted score is determined by the dot

product of the ultimate user and item embeddings:

Îai = v∗
T

ai v
∗
ai. (29)

G. Optimization Method
Our optimization approach utilizes a pairwise ranking loss

function, favored in scenarios involving implicit feedback data.

L = min
Θ

∑
(a,i)∈I+∪(a,j)∈I−

− ln(σ(Îai− Îaj))+ρ||Θ||2, (30)

where I+ signifies the collection of positive instances (known
user-item interactions), while I− represents the negative in-
stances (user-item pairs not observed and hence sampled
from the set I). The function σ(x) denotes the sigmoid
activation, and Θ encompasses the parameters to be optimized.
The coefficient ρ is introduced as a regularization term to
curb overfitting by penalizing large parameter values. The
differentiation property applies to all parameters within this
loss function.

The initialization of parameters employs a normal distribu-
tion centered at zero with a standard deviation of 0.01. The em-
bedding dimensions within convolutional layers are uniformly
maintained, avoiding any intentional alterations. The archi-
tecture of the multi-level attention mechanism incorporates a
dual-layer MLP. Further details on parameter configurations
will be elaborated in the experimental discussions.

IV. EXPERIMENTS

To validate the ISKG framework’s robustness, we perform
comprehensive experiments on a dataset (Yelp). These ex-
periments are aimed at responding to the following research
questions (RQs):

• RQ1: How does the ISKG model’s performance compare
with that of the leading-edge recommendation systems?

• RQ2: What are the effects of ISKG’s core components
on the model’s performance?

• RQ3: How does altering the weight parameter (λ) impact
ISKG’s efficacy, especially considering the weight de-
notes the significance of features enhanced by the social
graph and knowledge graph?

A. Experimental Settings

Datasets. To assess the efficacy of the ISKG framework,
we conduct evaluations across a dataset. The dataset has
been adapted from the KGAT dataset. Detailed statistics for a
dataset is presented in Table I.

TABLE I
STATISTICS OF THE DATASETS.

Yelp

#Users 45,919
#Items 45,538
#Entities 5,538

#User-Item Interaction Graph 1,185,068
#Social Graph 1,035,463
#Knowledge Graph 1,853,704

Utilizing the Yelp dataset, we construct a multi-dimensional
graph structure that represents the complex interactions among
users, businesses (as items), and their associated attributes
(forming entities).

In our knowledge graph, businesses are modeled as items,
with their location and category attributes extracted to form
entities. This extraction process delineates the multifaceted
nature of each business and its potential categorization within
the graph.

Our social graph is derived from the ‘friends‘ attribute
within the user data, establishing social connections that reflect
the network of interactions and influences among users.

The user-item interaction graph is crafted from user re-
views, specifically utilizing the star ratings given to businesses.
These ratings not only represent user preferences but also
serve as the predictive target for our recommendation model’s
performance evaluation.

Each user, item, and entity is represented as a node within
the respective graphs, with edges indicating relationships such
as friendships, reviews, or attribute associations. The rating
score, which is central to our analysis, is the numerical
value that users assign to items, reflecting their satisfaction
or experience.

In summary, our dataset amalgamation process for the Yelp
dataset entails the following:



• Entities are generated from business attributes, shaping
the Knowledge Graph.

• Users are connected through their social ties, forming the
Social Graph.

• User-item interactions are established via reviews and star
ratings, creating the User-Item Interaction Graph.

This structured approach allows for an extensive analysis of
user behavior, social influence, and item characteristics within
the domain of recommender systems.

Given the granularity of the Yelp dataset’s ratings, we un-
dertake a binary transformation of the score values to facilitate
our recommendation model’s classification task. Specifically,
ratings above the threshold of 3 are converted to a binary value
of 1, signifying a positive interaction, while all others are set
to 0, indicating a neutral or negative interaction.

Further refining the dataset, we apply a filtering criterion to
enhance the quality and reliability of the interactions and social
connections represented. Users with fewer than two ratings or
social links, as well as items with fewer than two ratings,
are excluded from the dataset to ensure a minimum level of
engagement and data density.

In the interest of establishing a robust experimental frame-
work, we devise a partitioning scheme that ensures a compre-
hensive coverage of each user’s interaction history. We allocate
80% of each user’s recorded interactions to form the training
set, which serves as the foundation for the model’s learning
phase. The residual 20% of interactions are designated as the
test set, employed to evaluate the predictive prowess of the
model post-training.

Within the training set, we further earmark a random 10%
subset of interactions to serve as the validation set. This subset
plays a pivotal role in the fine-tuning of hyper-parameters, thus
facilitating the optimization of the model’s performance prior
to its assessment on the test set.

Baselines. In our experiments, we compare the ISKG with
various advanced baseline methods:

• BPR [14]: A groundbreaking model tailored for item
recommendations from implicit feedback, BPR employs
a distinct optimization criterion, BPR-Opt, a Bayesian-
derived maximum posterior estimator that reshapes the
ranking endeavor. Its universally applicable algorithm
uses stochastic gradient descent augmented by bootstrap
sampling, significantly outstripping conventional learning
approaches for personalized ranking endeavors.

• NFM [15]: An exemplary factorization model under-
pinned by neural networks, NFM enhances the FM ap-
proach by incorporating an additional hidden layer to
enrich the input feature representation, as suggested in
[15].

• CKE [16]: A method rooted in regularization, CKE
leverages semantic embeddings extracted from TransR
[17] to fortify the matrix factorization process [14].

• CFKG [18]: CFKG employs TransE [19] over a unified
graph that integrates users, items, and entities, framing
the recommendation system as a prediction of plausible
interaction triplets.

• KGAT [20]: Building on CFKG, KGAT extracts higher-
order semantic connections from the knowledge graph
through GNN, allowing for the concurrent refinement of
recommendation quality and knowledge graph embed-
dings.

Evaluation Metrics. In our Top-N recommendation-centric
study, the model’s efficacy is gauged through two core metrics:
Recall@N, and NDCG@N, with N set to 20. Recall@N
quantify the correlation, and NDCG@N assesses the ranking
accuracy of prevalent items. Enhanced metrics imply superior
performance. We conduct each experiment quintuply to ensure
equity in evaluation, subsequently averaging the rankings
across all items.

Parameter Settings. The model, deployed on PyTorch,
operates with a batch size of 1024 and epoch count of 3600.
Optimization of parameters is achieved via the Adam opti-
mizer. Optimal learning rates, selected via grid search, are set
within [0.0001, 0.001, 0.005, 0.01], and embedding dimensions
are chosen from [16, 32, 64, 128]. In RQ3, ISKG introduces a
manual tuning parameter (λ), pivotal for model adjustment.

Reproducibility. Post-acceptance, our codebase will be
hosted on GitHub to foster reproducibility of the study’s
findings.

B. Recommendation Performance Comparison (RQ1)
In this study, we concentrate on the performance evaluation

of the Top-N recommendation system and present the com-
parative results of our model against other baseline models in
Table II.

TABLE II
PERFORMANCE COMPARISON ON YELP DATASET.

BPR NFM CKE CFKG KGAT ISKG %Improv.

Recall 0.1423 0.1428 0.1437 0.1322 0.1442 0.1511* 4.79%
NDCG 0.1458 0.1466 0.1405 0.1444 0.1447 0.1523* 3.89%

• The ISKG model exhibits exemplary performance across
all evaluation metrics on the Yelp dataset, underscoring
the efficacy of our approach. With respective improve-
ments of 4.79% in Recall and 3.89% in NDCG, the ISKG
model validates its superior capability in capturing high-
order collaborative signals within user-item interactions
and the social domain of users.

• Compared to matrix factorization methods such as BPR
and NFM, the ISKG model integrates social relationship
information and knowledge graph insights, augmented
by an attention mechanism and contrastive learning, to
enhance the representational learning of the user social
domain. This demonstrates the significance and necessity
of GNNs within the recommendation system framework.

• Furthermore, the multi-tier architecture of the ISKG
model, as depicted in Fig 2, from the Initial Embedding
Layer through to the Fusion and Propagation Layers,
provides depth and capacity for the complex user-item
relationships. This ensures the model’s ability to capture
intricate interactions inherent in the data.



C. Ablation Study of ISKG Framework (RQ2)
In order to assess the significance of the core components

within the ISKG framework, we conducted an ablation study
by creating several model variants:

1) ISKG-a: The self-attention mechanism responsible for
computing weights in the Propagation Layers is re-
moved.

2) ISKG-s: The social enhancement component is omitted.
3) ISKG-K: The knowledge graph enhancement compo-

nent is excluded.

Fig. 4. Impact of Component Ablation on ISKG Performance

The ablation study provides quantitative insights into the
importance of individual components within the ISKG frame-
work, as presented in Figure 4.

• The absence of the self-attention mechanism (ISKG-
a) incurs a relatively minor impact on the model’s
performance, indicating the robustness of the remaining
components. Despite a slight decrement in performance
metrics, the model retains a significant portion of its
recommendation capabilities.

• A closer examination reveals that the removal of social
enhancement (ISKG-s) or knowledge graph enhancement
(ISKG-K) exerts a more pronounced detriment to the
model’s efficacy. This suggests that these components
play a more pivotal role in capturing the nuanced user-
item interactions and preferences.

• Interestingly, the comparable influence of omitting so-
cial enhancement and knowledge graph enhancement
indicates a balanced contribution of these elements to
the overall model. The slight variance in their impact
underscores the synergistic nature of these enhancements
in the ISKG framework.

Based on these observations, it is evident that while the
attention mechanism contributes to the fine-grained refinement
of user-item interactions, the social and knowledge graph
enhancements are integral to the model’s holistic understand-
ing of the domain. The nuanced interplay between these
components is crucial for the ISKG’s superior performance.

D. Impact of Weight Parameter λ on ISKG’s Efficacy (RQ3)
In Fig.5, we present the performance trend of ISKG as

a function of the weight parameter λ, which balances the

influence of features enhanced by the social graph and the
knowledge graph.

Fig. 5. Variation of ISKG Performance with λ Weight Parameter.

The experimental results, as depicted in Fig.5, lead to
several insightful observations:

• The model’s performance in terms of NDCG peaks at
λ = 0.5, suggesting an optimal balance between the
contributions of the social graph and the knowledge graph
at this point. This equilibrium signifies the pivotal role
of both social influences and knowledge-based features
in the recommendation process.

• Conversely, the highest recall is observed at λ = 0.4,
implying that a slightly greater emphasis on social graph
features yields better user-item interaction predictions.

• Notably, at λ = 0.45, both recall and NDCG metrics con-
verge to similar values, indicating a near-optimal trade-
off between the two aspects of the model. This balance
might be the key to a more robust and generalizable
recommendation system.

The findings underscore the nuanced interplay between dif-
ferent feature enhancements and their collective impact on the
recommendation quality. The adaptive weighting mechanism,
hence, stands validated as a crucial component of the ISKG
framework.

V. CONCLUSION&FUTURE WORK

In this work, we introduce the Integrating Social and Knowl-
edge Graphs in GNN-Based Recommender Systems (ISKG)
approach. Specifically, we amalgamate user representations
derived from user interest domains, user social domains, and
knowledge graphs, thereby facilitating high-order feature prop-
agation characterization. Concurrently, a self-attention mecha-
nism is utilized to refine the learning of salient nodes, thereby
enhancing the accuracy in capturing user preferences and
item similarities. Notably, we further incorporate an Adaptive
Weighting Mechanism to modulate the significance of features
augmented by social graphs and knowledge graphs. Extensive
experiments and subsequent studies corroborate the efficacy
and soundness of the proposed methodology.

Future work will pivot towards exploring noise reduction
in the knowledge graph generation process, connecting users



and extracted entities to delve into a tripartite space composed
of users, items, and entities for a more comprehensive in-
formation exploration. Additionally, integrating recommender
systems with 3D semantic scene completion [21], could unveil
a paradigm where the analysis of users’ physical environments
enhances personalized recommendations.

Moreover, considering the dynamic changes brought by
temporal aspects in user interactions, future versions of our
model will aim to incorporate a time decay mechanism. This
addition will enable the model to better handle the evolving
nature of user preferences over time, potentially offering a
more nuanced understanding of temporal dynamics in recom-
mender systems. The time decay mechanism will also serve as
a foundational element for enhancing the model’s adaptability
to changes, ensuring that recommendations remain relevant
and timely.
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